

# **WJEC Wales Chemistry GCSE**

# 2.2: Acids, bases and salts Detailed notes

This work by PMT Education is licensed under CC BY-NC-ND 4.0









# The pH scale

The pH scale (0 to 14) measures the acidity or alkalinity of a solution and can be measured using universal indicator or a pH probe:

- pH 7 is neutral
- Less than pH 7 is acidic
  - The lower the pH, the stronger the acid.
- More than pH 7 is alkaline / basic
  - The higher the pH, the stronger the alkali.
- As the pH decreases by one unit, the H<sup>+</sup> concentration of the solution increases by a factor of 10.
- An alkali is a base that dissolves in water
- The pH scale



# Acids and alkalis

#### <u>Acids</u>

- Acidic solutions release hydrogen ions, H<sup>+</sup>, in solution
- Strong acid = completely dissociates to release H<sup>+</sup> ions in aqueous solution
  - Hydrochloric, nitric and sulfuric acids
- Weak acid = partially dissociates to release H<sup>+</sup> ions in aqueous solution
  - Ethanoic, citric and carbonic acids

#### <u>Alkalis</u>

- Alkali solutions contains hydroxide ions, OH-
- Strong bases fully dissociate to release OH<sup>-</sup> ions in aqueous solution
  - Sodium hydroxide, potassium hydroxide
- Weak bases partially dissociate to release OH<sup>-</sup> ions in aqueous solution
  - Ammonia, ammonium hydroxide

### **Describing acids and bases**

- Acids and bases can be referred to a strong/weak and dilute/concentrated. These sets of words should not be confused.
- Dilute / concentrated refers to the amount of substance present to the number of moles of that acid / base in solution

 Weak / strong refers to the degree of ionisation of the acid or base - how readily the acid releases H<sup>+</sup> ions or how readily the base releases OH<sup>-</sup> ions





## **Reactions of acids**

#### Reaction of dilute acid with metals

Acid + metal  $\rightarrow$  salt + hydrogen

• The reaction depends on the reactivity of the metal. The reactivity series shows the relative reactivities of different metals.

#### Neutralisation of dilute acids

Acid + alkali  $\rightarrow$  salt + water Acid + base  $\rightarrow$  salt + water Acid + metal carbonate  $\rightarrow$  salt + water + carbon dioxide

- All three of these above reactions are neutralisation reactions
- Examples of alkalis are soluble metal hydroxides
- Examples of bases are insoluble metal hydroxides
- The salt produced depends on the acid used and the positive ions in the base, alkali or carbonate.

#### HIGHER TIER ONLY - Neutralisation

Any neutralisation involves the reaction of hydrogen ions with hydroxide ions:

 $H^{+}(aq) + OH^{-}(aq) \rightarrow H_{2}O(I)$ 

## Salts

#### Naming salts

The salt produced...

- Depends on the acid used...
  - Hydrochloric acid produces chlorides
  - Nitric acid produces nitrates
  - Sulfuric acid produces sulfates
- It also depends on the positive ions in the base, alkali or carbonate i.e. the metal, which makes up the first part of the name e.g. sodium chloride
- Examples:
  Sodium oxide + hydrochloric acid → sodium chloride + water
  Potassium carbonate + nitric acid → potassium nitrate + water + carbon dioxide

#### Preparing soluble salts

Soluble salts can be made from acids by reacting them with solid insoluble substances, such as metals, metal oxides, hydroxides or carbonates:

- 1. Measure a set volume of your acid
- 2. Heat the acid gently
- 3. Add the chosen base in excess (until no more will dissolve). You know the acid has been neutralised when excess solid sinks to the bottom

**D O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O** 

4. Filter the excess base using filter paper and a funnel

🕟 www.pmt.education



- 5. Heat the salt solution to evaporate the water (to make the solution more concentrated)
- 6. Leave the rest to evaporate slowly so crystals of the salt form.

Example - if you wanted to produce copper sulphate then you would need to use sulfuric acid and an insoluble copper compound, such as copper oxide.

#### Preparing insoluble salts

Insoluble salts can be made in a precipitation reaction.

- 1. React 2 solutions that contain the ions of your desired salt (for instance, to make lead sulphate you need solutions containing lead ions and sulfate ions)
- 2. A solid precipitate of your salt is produced
- 3. Filter the salt out using filter paper and a funnel
- 4. Wash with distilled water and leave the salt to dry on the filter paper

# Titrations

The volumes of acid and alkali solutions that react with each other can be measured by titration using a suitable indicator.

#### How to carry out a titration:

- 1. Add acid to burette using a funnel, record the start volume of the burette
- 2. Add a known volume of alkali to a conical flask and add a few drops of indicator (such as phenolphthalein)
- 3. Place the conical flask on a white tile so you can see the colour change clearly
- 4. Turn the tap of the burette to slowly add acid to alkali until you reach the neutralisation point when the indicator changes colour.
  - If using phenolphthalein the indicator is pink when the solution is alkali and colourless when acidic. For this reaction the neutralisation point is when the solution turns from pink to colourless.
- 5. Calculate the volume of acid. This is called the titre
- 6. Repeat until you get concordant titres titres within 0.1 cm<sup>3</sup> of each other

### **Titration calculations**

- Once you have carried out a titration and obtained concordant results use all concordant results to calculate the mean titre. Exclude results that aren't concordant when calculating the mean.
- HIGHER TIER ONLY: If you only knew the concentration of the acid and wanted to calculate the concentration of the alkali:
  - Calculate moles of acid using moles = concentration x volume
  - Calculate the mole ratio of acid to alkali using the balanced chemical equation for the reaction
  - Work out how many moles of alkali you have using the mole ratio and moles of acid (e.g. if you have 5 moles of acid and the ratio of acid to alkali is 1:2, you will have 10 moles of alkali)
  - Calculate the concentration of the alkali using concentration = mol ÷ volume

**D O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O** 





• The units of concentration when calculated this way are given in mol dm<sup>-3</sup>

## **Chemical tests**

#### Test for carbon dioxide gas

• Bubble the gas through the limewater (calcium hydroxide solution) and it will turn milky (cloudy) if carbon dioxide is present.

#### Test for carbonates

- Carbonates react with dilute acids to create carbon dioxide.
- This gas can be bubbled through limewater; if the limewater goes cloudy, the gas is CO<sub>2</sub>.

## Test for sulfate ions

- First add dilute hydrochloric acid, followed by barium chloride solution.
- A white precipitate will form if sulfate ions are in this solution

▶ Image: Contraction PMTEducation

